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LIOUVILLE’S  EQUATION  AND  THE n-BODY PROBLEM 

by 
R. G .  Langebartel 

Goddard Space Flight Center 

SUMMARY 

The  motion of a system of particles is examined on the  basis 
of the  fundamental  equation  in  statistical  mechanics.  The  Dirac 
delta function is used  to  describe  systems which are   discrete  in 
position  space,  velocity  space, o r  both as degenerate  cases of 
continuous systems.  The  approximation  procedure,  necessitated 
by the nonlinearity of the  problems, is based on the use of ex- 
pansions  in  successive  derivatives of the delta function. This  ap- 
proach  leads  to  sum-difference-differential  equations of a novel 
form  for  the  quantities of interest,  equations  subject  to a variety 
of techniques  for  solution.  The method is applied  to  the  dispens- 
ing  and dispersion of the “West Ford  Needles”  belt,  and  to  the 
problem of permanence of symmetry of the  configuration of a 
collection of Echo-type  satellites. 
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LIOUVILLE'S EQUATION  AND THE n-BODY  PROBLEM 

bY 
R. G. Langebartel 

Goddard  Space  Flight Center 

INTRODUCTION 

The  non-linearity of most  problems in celestial  mechanics  usually  necessitates  the  use of 
some  approximation  method.  The  scheme  outlined in the  present  work  leads  to  equations of a 
form  rather  different  from  those  encountered in the standard  procedures.  The point of departure 
of the method is the  regarding of the  particle or collection of particles as constituting a medium 
in phase  space  subject  to  the  fundamental  collision-less  equation of statistical  mechanics, Liou- 
ville's Equation.  Such a medium is of necessity highly degenerate, so that its distribution  function 
will  involve the  Dirac delta function. An example of a classical  use of such  "singularity  functions" 
in statistical  mechanics is the  T'microcanonical  ensemble" of Gibbs for which the  degeneracy is 
in the  energy.  However,  for  the  celestial  mechanics n-body problem  the  distribution  function  must 
be  taken as degenerate in both  velocity  and  position  space.  Some  problems (e.g., the  determination 
of the  motion of the  West  Ford  needles)  call  for a distribution  function  degenerate only  in velocity 
space. A medium of this type is not  the  customary  "gas" of statistical mechanics,  but  instead is 
the  "completely  incoherent  medium" of Lichtenstein  (Reference 1). 

The first sections  are  preliminary in character and  introduce  the  use of the  delta  functions  to 
describe  the  degenerate  media.  The  approximation method is developed in the  section  devoted  to 
the  improvement of an approximate  orbit. 

THE FUNDAMENTAL EQUATION 

The  principal  condition of the density  distribution  function is that it satisfy  Liouville's  Equa- 
tion, the Equation of Continuity. This  means  that the density of the medium  throughout its motion 
remains  constant in phase  space.  The  forces  are  assumed  to  be  conservative,  the  force  vector 
being  the  negative of the  gradient of the potential. 

Let q, and p, be  the n Hamiltonian  coordinates  and  their  conjugate  momenta,  and H (qr , p , ,  t )  

the  Hamiltonian  function.  "Phase  space" is the  2n-dimensional  space of points 
(ql, ... , q n I  p l ,  - ,  p, ) . Let f (qk, p r ,  t) represent  the  density  distribution function in phase 
space.  Liouville's  Theorem  (Reference 2, p. 83; Reference 3, p.  266) asserts that 
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This first order  partial  differential equation in f is the  fundamental  equation  for  this  theory. If 
the  forces involved are purely  external  then  the  equation is linear. But if the  self-gravitation of 
the  particles is taken  into  account  then f enters  into H through the potential  function v ,  and the 
equation  becomes a nonlinear  integro-differential  equation  which  in  almost  every  case  must  be 
handled by some  approximation  procedure. 

Liouville's  Equation  (Equation 1) can  be  derived  directly  from  the  Hamiltonian  Equations of 
Motion,  but it is instructive  for  the  case of a degenerate  medium  to show the  equivalence of Equa- 
tion l to  the Newtonian Theory by making use of the  delta  function S(x).  Such a "function" has 
been  employed for  years but it is only  relatively  recently that a satisfactory  theory  incorporating 
them has evolved  (References 4, 5, and 6). Physically &(x) represents  the  density  distribution 
function of a unit mass concentrated at the  origin. 

If the  motion of a certain  system with n degrees of freedom is 

9, = Q, ( q s 9  p S ,  t )  , 
(2 ) 

P, = pr  (q., P * -  t )  3 

then  the  phase  space  density  function  for  this  system is 

f = b ( q r  - Q r ,  p , - P , )  E b ( q l - Q l ,  . . .  7 qn - Q n x  P I  - P I ,  . * - ,  pn- P n )  . (3 1 

We want  to show that substitution of Equation 3 into  Equation 1 leads  to a result  equivalent  to  that 
predicted by the Newtonian Theory. With the  notation 

Equation 1, for  the  substitution of Equation 3,  takes  the  form 
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where H,, d Z  H (Qs, P, ,  t ) / d P ,   d P ,  ; i.e., the  original  variables qr and p,  in H are  replaced by 
the  functions Q, and P, . In deriving  Equation 4 use is made of formulas  for  the  multiplication of 
the  delta  function or  its derivative by another  function.  The  particular  formulas  employed in this 
instance  are  (Reference 5, p. 10) 

k r  

Setting  the  coefficients of S r  and S n t r  to zero  gives a partial  differential  equation  system in 
Q, and Pr  of a rather  special  form, a "quasi-linear  system with same  principal  part"  (Reference 7, 
V. 11, p. 117). Its  solution  can  be  expressed as an  arbitrary function of 2n functions of q r ,   p , ,  t . 
These functions  in  the present  case  turn out  to  be  precisely  the Newtonian integrals of motion for 
the given Hamiltonian.  The  coefficient of b in  Equation 4 can  be  written in the form 

and since g ( x )  b ( x  - a )  = g( a )  b ( x  - a) the b term is 

That  Equation 4 represents  the Newtonian Theory  can be verified in a much briefer fashion 
by considering  the  special  case Q,  Q, ( t ) ,  P r  = Pr  ( t )  , the  form in  which the  solution  to a prob- 
lem in dynamics is most  often  sought. For Q, and p, independent  of q r  and p ,  the  vanishing of 
the  coefficients of S r  and S n t r  gives  immediately 

i.e., P, and Q, satisfy  the  Hamiltonian  Equations of Motion.  Note that  for P r  and Q, independent of 
p, and q, each  term  in  the  coefficient of 6 in  Equation 4 vanishes. 

Other  choices  for  the  variables  present in Q, and P, lead  to  certain  specialized  forms  for  the 
quasi-linear  system  derived  from  the  coefficients of 6 r  and 6,+, in  Equation 4. This  permits a 
choice of equations  to  be  used  for a particular  problem. 
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Example-Harmonic  Oscillator 

The  Hamiltonian is H = 1/2 (qz + p 2 )  and we will  take Q = Q( t )  and P = P(q) . From Equation 4 

P * + q  = 0 I 

dP 

for  which P = ? ic3.  The  remaining  equation  taken  from  Equation 4 is then merely 

and  the  complete  solution is 

Q = c1 s i n  ( t  -c,) , 

The  equations  taken  from  Equation 4 under  the  assumption Pr  = Pr  ( t ) ,  Q, = Q, ( p , ,  t )  might 
be  easier  to handle  than  those  resulting  from  the  assumption P, = P, (q., t ) , Q, = Q, ( t )  for a par- 
ticular  problem.  Employing  the  former  assumption  rather  than  the  latter (a sor t  of dual  situation) 
is somewhat  analogous  to  the  use of the  Legendre  transformation in partial  differential  equations 
(Reference 7, V. 11, p. 26). 

THE n-BODY PROBLEM 

The  rectangular  coordinates  are z l ,  z,, z3 and the  corresponding  velocity  components z,, z,, 
Z,; a u / a ~ ,  is the  negative of the  force  per unit mass due to  the  self-gravitation of the  particles 
themselves. F, ( z S ,  t )  is the  external  force  per unit mass (due, for  example,  to  the  mass of a 
body not  taken as a part of the  n-body system and regarded as not  affected by the  masses of the 
n bodies).  Liouville’s  Equation  (Equation 1) takes  the  form 

The  density  distribution  function  that  describes  the n-body system is given by 
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In Equation 6 ;r[d and zr[d are the  position and velocity  coordinates oi the uth particle, and zr 
and Z, are   the running  position  and  velocity  coordinates  throughout  the  space. We shall find  the 
form  Liouville's  Equation  takes  under  the  substitution of Equation 6 with the  assumption that ;r[d 

and zrM are functions of all the  variables z,, z, , t ,  although  in practice  they would most  likely  be 
restricted in this  regard, often  being  functions of t alone. A case of some  importance  (already 
mentioned) is that of taking ?,[a3 as a function of t alone  and zrM as a function of both z S  and t . 
Examples of this  will  be given shortly. 

To obtain  the  density  distribution, N, in  position  space  the  phase  space  density  function, f , is 
integrated  over all velocity  space  (the  concept of density  here is the  same as that for  hydrodynamics): 

N = JJJf dZ,  dZ,  dZ, . 
-m 

Consequently,  the  potential u due  to  the n bodies is 

= - I//- - .. 

N ( X , ,  t )  dz, dz, dz, 
" i(zl - F l y  t (z, -z,y t (z, - z 3 y  

~~ 

-m 

In this f i n a l  expression  for u the  functions zsH no longer  involve Zr and Z, (if they  ever  did)  since 
these  have  been  removed by integration. 
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Again the following  notation is employed: 

This simplifies  the  expressions  for  the  necessary  formulas: 

Special  attention  must be paid  to  the term (dU/dz,) 8,pl since the delta function changes z 5  into 
2sH and dU/dz is not  well  defined  for zS = ;sH . Actually,  the particular  terms in (du/bz =) 6 
where  this difficulty ar ises  should  be  taken to be zero.  The  discontinuity in dU/dz, is such that the 
limiting  value of this function at the point (;,["I z2[al, Z3H) in the  troublesome  term depends on 
the direction of approach. For one set of directions  the  limiting  value fails to be well  defined,  but 
for  the  remaining  directions it is well defined and  turns  out  to  be  zero. Indeed, if the  factor 
6 (z l  - Zlb]) is left  until last in  the  consideration of the  product.  then  the  result is 
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with  the  meaning  unclear.  However, if the  product is taken in another  order a definite  value is 
obtained: 

il (. - 2p) 6 (z - 21[d) 
6 ( z*  -z2[d) s ( z 3  - 1 3 q  

[(zl - r 1 q z  + ( z 2  f (z3 -zp)2] 

Moreover,  the  term  physically  represents  the  action of the  self-gravitation  force of the  particle 
and thus  plays no role in determining  the  motion of the  system. Consequently, wherever it oc- 
curs it is regarded as zero, and 

In these  sums, as indicated,  the  terms  where p = u are  to  be  deleted.  This is a manifestation of 
the  vanishing of the  weak  functions  treated  above.  The  symbol 6 yS in  the last term  stands  for  the 
Kronecker  delta  (not  the  Dirac  delta  function)  and is unity for r = s and  zero  for r # s. 

7 



On the  basis of these results Liouville's  Equation  in  rectangular  coordinates for an n -body 
system is 

'I 
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In the  event yrH and zrH depend  only on t,  Equation 7 becomes 

a=l s = I  

ma (. [E p k P 1  - y,[61)2] 3'2 
k 

Inasmuch as the  coefficients of S s b ]  and 8 2 ;  a r e  independent of z r  and Z r  , the  left  member can 
vanish only i f  the  coefficients of the  delta  functions a r e  all zero. But this means  that 

the  standard  equations  for  the n-body problem. 

Numerous  problems are  treated  more advantageously in a coordinate  system  other than  the 
rectangular.  Several  examples will  be  considered  here in which cylindrical  coordinates  are  most 
natural.  Let  these  coordinates  be r , 8 ,  z and the  components of velocity in these  coordinate  di- 
rections  be R ,  0, z . Liouville's  Equation  in  cylindrical  coordinates has the  form  (Reference 2, 
p. 187) 

The  density  distribution  function  representing  the n-body system is 

a= 1 

The  self-gravitation  potential is 
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and  take r l y  r 2 )  w to  be  constants.  This  means we areassuming a densitydistributionfunction of the form 

a= 1 

Substituting  these  into  Equation 9 and  making use of the  relation g( X )  &(X - a)  = g( a )  S (  X - a )  gives 

The  subscripts on 6 again  stand  for  partial  derivatives.  The  potential  function  terms  are 

Consequently,  Equation 10 takes  the  form 
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The  delta function  manipulations  used  in  deriving  Equation 11 reduced it to a point where  the coef- 
ficients of all the  delta  functions  are independent of r , 8, Z ,  R ,  0, z; and so these  terms are essen- 
t ially independent of each  other.  Consequently, in order that Equation 11 be satisfied  these 
coefficients  must  vanish.  From  the 6 $1 and 6 terms it is apparent  that 

However, from  the 6, terms  we see it is necessary that %[l] - z[2J = 0 or T . Let  us  choose T 

and take = w t  , = ut + T  . The  vanishing of the 6, coefficients  after  these  substitutions  gives 

From  this it is deduced that m 2  r 2  = m l  r and that 

The  expressions  for 0: can  be  combined  into a symmetric  form: 

Thus we have  obtained, by the  Liouville  Equation  approach,  the well-known result of the  existence 
of a solution  to  the two-body problem in the  form of two particles  revolving  in  circular  orbits 
about  their  common  center of gravity. 

Example-Restricted  Three-Body  Problem 

In this instance n = 3. Take "i] , 8[4 , etc.  for G = 1 and 2 to  be as they  were found in the 
previous  example. We shall t ry   to  get  the  straight  line ("syzygy") solution.  Consequently, let   us 
take :L3] = r 3  (constant), [d = ut, 0 b] = IW, and 219 = %["I = 2 = 0 . Also f = f + f 

where f = e ma 8 @ and f = m3 6 L3]. This  partitions the density  distribution  function  into a 
part, f o, goGegning the motion of the two principal  bodies (which already has been found to  satisfy 
Liouville's  Equation) and a part, f , connected  with  the motion of the  third  particle.  The f part  
has to  be  determined,  and  Liouville's  Equation  (Equation 9) becomes  an  equation  in f l ,  somewhat 
simplified by the  fact  that f itself satisfies Equation 9. However, despite its appearance Equation 9 

m 
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is nonlinear  because of the  presence of f in u. This  may  be  indicated by writing u = u ( f )  = u ( f ,  + f ,) . 
But  the  functional  relation of u on f is essentially  that of integration, a linear operation.  This 
means U ( f ,  + f , )  = U ( f , ) + U ( f , )  . The  equation  for f ,  is found to  be 

The  delta function representations  for f ,  and f , reduce this to 

d f ,   d U ( f , )  d f ,  
d Z   d z   d Z  = . 
”” (12) 

Equating  the  coefficient of to  zero  gives  the  classical equation for r3 for  the  straight  line 
solution  to the restricted  three-body  problem: 

Note that  the last two terms in  Equation  13, the S4[’] and S,[,] terms, cannot  be  made  to  vanish. 
This  implies that the  assumptions on the  make-up of f ,  and f were  too  restrictive  to  permit  an 
exact  solution  to  the  three-body  problem.  The  solution  must  be  regarded as approximate, but  in 
what sense it is valid is not  immediately  apparent  from  Equation 13. A modified problem  can  be 
formulated  for which f , is an exact  solution.  This is done by assuming  the  masses of the first 
two bodies so great in comparison  with the mass of the  third that its effect on the motion of the 
first two is negligible  (the  “restricted  three-body  problem”). In the  Liouville  Equation  approach 
this is equivalent  to  regarding u (f  ,) as a given external potential  and  setting  the  explicit f , in 
Equation  12  (i.e. J f ,/dR, d f , / d o ,  d f ,/dZ ) to  zero.  That is to  say, f is merely  the  density  distribu- 
tion  function for one particle moving in  an  external  force  field  set up  by the two unaffected 
revolving  bodies.  The  worrisome last two terms in Equation  13 do not appear,  whereas  the first 
remains  unaltered. 

IMPROVEMENT ON APPROXIMATE  ORBIT 

Expansions in Terms of  Delta  Functions 

This  section  discusses a method for  determining  corrections  to a given approximate  orbit of a 
particle or  system of particles in an  external  force  field.  The  procedure is based on the 
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representation of the density  distribution  function  for the particles  in  the  form of a ser ies  of delta 
functions and their  derivatives.  This  turns out to be essentially  equivalent  to  employing a power 
ser ies  in the differences between  the true and  approximate  values of the  coordinates and velocity 
components. 

Suppose  the  approximate  orbit of a single  particle is given by Z ,  = ẑ , ( t )  and z, = 2, (t), where 
Z r  ( t )  and tr ( t  ) a r e  known. Suppose further that the  actual  solution is representable in the  form 

where 

and the  superscripts  indicate  the r derivative,  etc. (Note the  different  use of the  superscript on 
the delta functions here  than in the  preceding  section.) On occasion it will  be  convenient to 
use  the  abbreviation f = c ~ ~ , ~ ~  ( t  ) 8 ( r i * s i )  . Let 1, ( t )  and ?r ( t )  be  coordinates  and  veloc- 
i ty components  for  the &&ct solution so that the  exact  solution  to  Liouville's  Equation 
is f = m 6 ( z r  - Z r ,  Z r  - Z r )  . Thus, we shall be  working with the  development of this delta func- 
tion  for  the  point (2r ,  Z , )  in  the  Equation 14 ser ies  of derivatives of delta  functions  about 
the  point ( Z r ,  ir) .  

b 

,L 

Expansions in ser ies  of the  Equation 14 type bear  certain  formal  similarities  to  expansions 
in terms of orthogonal  functions. In particular,  the  procedure  for  determining  the  coefficients  in 
the  expansion of a given  function is essentially  the  same in each  case-multiply by certain func- 
tions and integrate. In expansions  like  that  for  Equation 14 the  multiplication  functions a r e  power 
functions  and so the  coefficients are  determined by "taking  moments". 

Suppose  we  wish  to expand a given  function g ( z r ,  zr): 

c r . , s .  I ,  is determined  in  terms of g by multiplying: 

(21 -Qhl (z* - % ) h Z ( 2 3  - Z J h 3 ( Z 1  -zl)kl(z* - Z 2 p ( Z 3  - z 3 ) k 3  g ( z r ,  
- - 

z.) 
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Then  the following integration is performed: 

m 

The  repeated  integrals on the  right  can  be  evaluated  through  the  formula  (Reference 5, p. 10): 

This is to be zero i f  h > r ,  which is indeed reflected by the  fact  that (;I) , the  binomial  coefficient, 
should  be  defined as being zero  for h > r . 

Consequently, upon integration 

= (-l)h(i) h!  6; , 

(where S t  is the  Kronecker  delta: 6 ;I = 0 for r # h , 6 ;I = 1 for r = h ), since Jl S( z - Z) dz = 1, 
J-:s'(z-z)dz = J-:8 ' ' (z -z)dz  = ... - - 0. Thereupon  the  right  side of Equation 16 becomes 

= (-1) h1th2t"'tk3 (L:) . . . (ti:) h ,  ! . . . k 3 1 ' hlh2h3klk2k3 

This  supplies  the  necessary  formula  for  the  coefficients in the  expansion  (Equation  15), 

and this  represents  the  inversion of Equation 15. 
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I This will  now be  applied  to  the  case at hand; i.e., g ( z , ,   Z r )  = rn 6 ( z r  - g r ,  Zr - Z r )  and zr = i r ,  
- 

- 
Z r  = ir . The  differences between the  true and  approximate  values a r e  

The  coefficients, as given by Equation  17, specialize  considerably: 

But ( Z  - 2 + ) h  - (  z - 2 )  t .'( z - 2 )  , implying  that  the  formula  for  the  coefficients  in  the  expansion 
of 111 '1 ( Z  - Z r l  z r  - ? r )  in terms of the  differences 6 and T~ is 

An alternative way of expressing the  derivation of these  formulas  for  the  coefficients 
is more in the  spirit of the  Schwartz  distribution  theory.  This method uses  the convolution prod- 
uct, f * g (Reference 5, p. 31), instead of the  rather  loose  procedure with  integrations  involving  the 
delta  function but  devoid of testing  functions. In this  more  satisfactory  presentation w e  have, 
starting with  Equation  15: 

15 



I 

Upon taking the convolution  with the  unit  constant  function, 

[(z, -5,p * * .  ( Z 3 - i 3 F  g(Z,, z,)] * 1  

Since  the  convolution of two functions is well  defined if one of them has compact  support  (such as 
the delta  function or any of its derivatives  does),  the  left  member of Equation  20 has meaning if 
g ( z , ,  zr) has  compact  support.  The  general  formula  from  Equation 20 for  the  coefficients is, of 
course, 

Andif g ( z r ,  z , )  = m 8 ( z r - l r ,  z r - z r )  then 

Thus we again arrive at Equation  19. 

These  coefficients as given by Equation  19 a r e  of special  interest  since they a r e  so simply 
related  to  the  errors.  Those  actually  pertinent  are  the  ones  for which h ,  t . . . t k, = 1 ,  since 
Equation  19  shows that clooooo = - m E l ,  coloooo = - m c 2 ,  etc. 

Application to  the Equation of  Continuity 
To  impose  the  condition of the  Equation of Continuity  we  substitute  Equation 14 into  Equation 

5 and  get,  initially, 

C * , I s ( r i * s i )  - ip 8(rl,***,rp+1,"~ 3) - c r i , s i  c ip S ( r l ,  %+1*"3) 
... 

r . , s .  
' r . , s .  

P * I  
r.,s. 

I I  
r . , s .  
L 1  
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(Since we are dealing with the motion of a particle in an  external  force  field,  the dU/dzr  term in 
Equation 5 does not enter.)  The  guiding  principle behind  handling  Equation  21 is to  reduce  the left 
side  to a sum of essentially independent terms.  This is accomplished by making  the  coefficients 
of the  delta  functions  independent of the  phase  space  variables z r  and zr. Manipulations  that  bring 
this about a r e  of the  type  used  earlier. In particular, 

Employing these  relations and,  where  necessary,  shifting  the  indices on the  various  sums so that 
all have the  delta  function  derivatives  written as b ( r i * s  i, enables u s  to add all these  sums as one 
sum on with coefficients independent of z and Z r  . These  coefficients  must  vanish if the 
equation is to be satisfied,  and so the  governing  equation  for c r  ( t )  is 

1 ' s  i 

An inspection of Equation 22 shows  that  ultimately an integration will  have  to be effected in 
determining c , , B ,  . In anticipation of this we turn  our  attention  to the constants of integration. 
These depend on the  initial  values of the differences of Zr (t) and f r  ( t ) ,  and ?r ( t )  and 2r ( t ) ;  i.e., 
on E ( 0 )  and T~ (0).  Consequently,  with these  numbers  specified the initial  values of c r ,  ( t )  

follow immediately  from Equation 19: 

I ,  
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In the  special  case that is apt  to  occur,  namely  that  the  approximate  solution (Z, ,  ir) has the 
same  initial  values as the exact  solution (Sr , z,) there is considerable  simplification: c~~~~~~ (0 )  = m ,  

and all other c , , , ~ ,  ( 0 )  = 0. 

-L 

I 3  

Equation 22 is a differential-difference-sum  equation in c ~ , , ~ ,  and as such can  be studied  from 
many  viewpoints. Perhaps it is most  natural  to  regard it primarily as a difference  equation which 
may  be treated as a recursion  relation,  each  step in the  sequence  providing a differential  equation. 
A  logical  successive  approximation  scheme  based on this view begins by considering  only  the 
t e rms  in  Equation 22 which start with & r , , s ,  whose subscripts add up to  unity, rl + r 2  t r 3 + S 1  i s 2  t s3 = 1. 
All terms having indices on the c'  s adding up to  more than  unity are  suppressed. As  apparent 
from Equation 19, terms of the second  and  higher  degree are neglected in the  correction  functions; 
i.e., it is a first order  theory in the  size of the e r r o r  functions.  To  obtain a second  order  theory 
we place  the  values of c ~ ~ , ~ ~  with r + . . + s 3  = 1 (found by integrating the system of equations 
just  indicated)  into  the  equations  extracted  fromEquation 22 headed C,  , , 5 .  with r + . . . + s 3  = 2. 
All terms  where  this  sum is greater than  2 are  removed.  This  system of differential  equations is 
solved  for c ~ , , ~ ,  (with r l  + . . . + s 3  = 2) and these  values  are  used in the  equations  beginning 
A r , , s ,  with r l  t ... + s 3  = 1. Solving this system  gives c ~ ; , ~ ,  with r l  t . . .  + s 3  = 1 to  the  second 
order in the  correction  functions.  This  process  evidently  can  be  continued in  theory with the  set 
of equations  where  the  sum is 3, etc. 

. I  

, I  

, I  

, I  

X I  

Of course,  other  procedures can be devised  for  obtaining  approximate  solutions  to  Equation 
22. We shall give  one  that  draws  heavily on the  special  form of the equation. 
problem is treated and  then  extended  to  three  dimensions.  Let 

The  one-dimensional  equation  with  this  simplification in  notation is 

The  one-dimensional 

. . )  . 

(24) 

This  can be regarded as a sum equation  in crtX,s-l  , the  left  side  regarded as known by assuming, 
for example,  approximate  values. In that event  this  equation is of the  "semireduced" or "semi- 
normal"  type  (Reference 8, p. 535). However, we shall examine  Equation 24 from  another point 
of view. One of the  other  ways is to  integrate  formally and use  successive  approximations.  This 
in effect inverts  the d/dt operator.  Convergence  properties  are  apt  to be  improved,  however, if 
a larger  portion of thedifferential-difference  operator that transforms c r , ,  on the  left is inverted. 
This will  be  done for  the  operator T where T c r  , s  = & r , s  - ( s  + 1) c , - ~ , ~ + ~ .  Consequently,  we 
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write 

where 

The  simplifying  feature of Equation 25 is the  fact  that  the  sum of the  indices on each of the 
two terms on the left is the  same,  namely r t S .  From  the  difference equation  point of view this 
means  that  Laplace's  substitution  (Reference  8, p. 427) is effective: p = r + S ,  u = s .  This  changes 
Equation 25 to 

wherein it is apparent  that, as a difference  equation,  this is essentially  an equation  in 0. This 
may  be e.mphasized by writing c ~ - ~ , ,  = U, and ( t )  = @u ( t ) .  Thus,  the  equation  to  be  ex- 
amined  becomes 

The  homogeneous  equation associated with  Equation 27 (i.e.,  the  equation  with eU ( t )  replaced 
by zero)  has  the  solution  (Reference 8, p. 327) 

where y is an arbitrary constant  and 3 is an  arbitrary  periodic function of D ,  of period  one.  Since 
we are  concerned with  only integral  values of D then p is a constant.  The  variation of parameters 
method  then suffices in solving  inhomogeneous  Equation 27. It is assumed  that 

and this is substituted  into  Equation 27. Thus  the  equation for W, ( t )  is derived: 
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The "shifting" operator E ,  i.e., Ew, = w,+~ , is introduced  and  regarded as constant, so that  the 
differential-difference  equation  (Equation 29) takes on the  appearance of being  only a differential 
equation: 

6, - 

This  linear  differential equation  with  constant  coefficients has the  solution 

where C, is independent of t .  Although r ( m  t 1) y-u is independent of T, it is left in the integrand 
since it must  lie  to  the  right of emt") which operates on it (as shown by the  presence of E ) .  Then, 
the  solution  to  Equation 27, by virtue of Equations 28 and 31, has the  form 

The  effect of the  operator erE(t-7) has  to  be  determined  to  make  this  usable.  This is perhaps 
most  easily  accomplished by employing  the  Maclaurin  expansion  for  the  exponential  function and 
making use of the  property E" f(o) = f ( o  f n )  . We have 

The  symbol ( k ) , as before,  stands  for  the  binomial  coefficient.  The  quantities C,, which a r e  
independent of t but  dependent on u ,  stem  from  the  work on Equation 27. In Equation 26 which in- 
volves  both p and U ,  p playing  no  effective  role, Cp,,+k can  be  substituted  for c ,+~.  consequently, 
the  general  solution  to  Equation 25, upon retrieving  the  variables r and S ,  is found to  be  under  the 

u + k  
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assumption  that  term by term  integration is justified 

For  the T integral  in  this  formula  the convolution  notation has been  used  for  greater  succinctness: 

The  initial  conditions serve  to  determine  the  constants C r .  s; for t = 0 in Equation 33 

which implies that 

r(s f k  f 1) 
'rts,stk X .,,stk ' r - k , s t k  (O) (34 1 

These  values  are  incorporated  into Equation 33 and the final  result is 

If the  exact and  approximate  orbits  have  the  same initial values  and  the  range on r and s is 
taken to be r + s 2 1,  the final ser ies  in  Equation 35, the one  involving c ~ - ~ , ~ + ~  (0) , drops out  com- 
pletely.  This is no real  restriction  since coo ( t )  is the mass and  therefore  considered known. The 
upper  limit on the  summation  signs  in  Equation 35 is r instead of m because c ~ - ~ , ~ + ~  and GI_,,* 
vanish  for k > r . 

Although Equation 35 can  be said to  solve  Equation 25 if the right  member of Equation 25 is 
taken as given,  actually  the  right  side  involves  the unknowns, c r , s  . Thus, in effect  the  inversion 
of the operator  has changed the  differential-difference  equation  (Equation 24) into an  integral 
equation,  but as such it is well  adapted  for  approximation  methods,  the method of iteration for 
example. 
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For a first order  theory  the  equations  are obtained from Equation 35 by setting ( t )  = 0 
for r + s 2 . These  equations a r e  

As mentioned  above,  the terms col ( 0 )  , cl0 ( 0 )  , and t col ( 0 )  disappear if  the  exact and approximate 
orbits have the  same  initial  values. 

For a second  order  theory it is assumed c r ,  ( t )  = 0 if  r + s 2 3 .  The  equations in this case 
a r e  

Cl0 ( t )  = [ (i-2) Coo d7 + ( t  - 7 )  (2-e)  Coo + ez cl0 + 6,, c,,]di + cl0 (0)  + t col (0 )  , I [ '  

The  extension  from one dimension  to  three  dimensions is almost  immediate.  After  the  sub- 
stitutions of r t s i  = pi and s i  = D~ a separation of variables is performed as before. In place of 
Equation 25 Equation 22 is now considered,  written as 
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The  result  comparable with  Equation 35 is 

The  preceding  work on the  improvement of an  approximate  orbit  for a single  particle  suffices 
as well for  a system of n particles.  It is only necessary  to  let the indices 1, 2, 3 refer  to  the 
first  particle,  the  indices 4, 5, 6 to the  second,  and  so on, letting  the  range on p and on i in r and 
s i  be 1 to 311, instead of 1 to 3. However, it is just as easy  to  obtain  the  necessary  formulas and 
equations by keeping these  ranges 1 to 3 and indicating  the  different  particles by a separate index, 
say  L ~ ,  with range 1 to n. In this  latter  approach  the  approximate  orbits of the n particles  are in- 
dicated by z r  = ( t )  , Z r  = 2,[4 ( t )  where r = 1, 2, 3 and a = 1 ,  2,- . ,  n .  The  exact  solution is 

for  which the  abbreviated  notation is 

If the  actual  trajectories  are given as z r  = Zr[d ( t  ), Z r  = ;?r[.3 ( t ) ,  then  the  exact  solution  also has 
the  representation 

The  differences between the exact and  approximate  values  for  the  coordinates  and  velocity  com- 
ponents a r e  e ?  = 2rb] - 2,[4 and v,[d = ?r[4 - 2r[4, and we  obtain as a counterpart  to Equa- 
tion 19 the  formula  for the coefficients  in  Equation 36 for  the  expansion of the  exact  solution 
distribution  function: 
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Working as before  leads  to  the  fundamental  equation,  the  counterpart of Equation 22: 

3 
* M - ( i P H  - iP"> - 2 ;PI 14 - 2 k p  + 1) c.. w ., rp-l.. .. ,sp+l, .. . 

' r i . s i  ' ..., r -1 ,... p ' ..., s -1 ,... 
p =  1 p =  1 p =  1 

p = l  h,=O X,=O h3=0 

= 0 . (38) 

Here as in Equation 22 the  notation c..., -l,. .. means that the  subscripts  are  the  same as for 

before,  any c,F4 .with a negative  index is considered  zero. 

w 
E4 with  the  exception of the  subscript rp which has  been  changed  to rp - 1. Also, as 

P 

'1'2'3s1s2s3 ' 
l P s i  

If the  self-gravitation of the  particles  forms  an  appreciable  part of the  force  field  then  this 
self-gravitation  effect  must  be  included  in  the  term  in Equation 38. This  self-gravitation 
term  has a reasonably  simple  formulation  involving crysi which  will now be  derived. 

The  position  space  density N ( z r  , t) is obtained by integrating  over the velocity  space: 

a r .  

The cr!2r3000 ( t )  involve  the masses of the  particles, as shown by Equation 37. The  gravitation 
potential  per  unit  mass  due  to  the  particles  themselves is then 

m 

The  convention  adopted earlier is that the  negative of the  gradient of the  potential is the  force 
vector. When - dU/dzr is incorporated  into FP , (see the earlier  treatment of the n -body problem) 
for  the  evaluation of FP at z r  = s,', assumed in Equation 38, the  terms  that do  not  become  well 
defined are  suppressed. 
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WEST FORD NEEDLES-DISPENSING 

An example of a problem that can  be  treated as degenerate  in  velocity  space but  not in posi- 
tion  space is provided by the  West  Ford  Needles  (References 9-13). The  intention of the  West 
Ford  project  was  to  place a large  number of small needle-shaped  particles  into  circular  orbits 
around the earth and form a thin  belt.  This  presents  several  interesting  dynamics  prob- 
lems, in particular that of dispensing the needles  from  the  original  container  to  spread out  into 
the  belt,  and that of the  dispersion  effect on the  belt by the  perturbational  forces  that may be as- 
sumed  to  be  present. It is not  the  purpose  here  to  attack  these  problems  exhaustively  but  rather 
to  provide a sufficiently  broad  treatment  to  exhibit  the  aptness of the  weak  functions  in  situations 
of this  general  character. 

First the  problem of the  dispensing of the  needles  from  the  container will  be  treated.  The 
natural  coordinates  are  the  spherical  coordinates p,  0 ,  + where B is the  longitude and + the co- 
latitude.  The  components of the linear  velocity  vector in these  respective  directions  are P, 0,  cp. 
Liouville's  Equation  for  such a coordinate  system is 

1 dU PO cot @0 1 dU P@ + cot 40' ) 2 = 
P ' (39) 

We shall deal with an equatorial  belt.  Thus  the  problem  could  be  regarded as essentially 
two-dimensional if the  belt is assumed  to be a curve (as we shall assume). However, the three- 
dimensional  equations  will  be  retained  and  the  delta  functions wil l  take  care of this  specialization 
automatically. 

At  time t = 0 the  needles  are  expelled  from  their  container at a distance po from  the  center 
of the  earth.  They move in  the  longitudinal  direction with a velocity  dispersion function, in  this 
direction only, of g(O) .  That is to  say,  the  initial  velocity  distribution  imparted  to  the  particles in 
the B direction by the  carrier  rocket and the  expulsion  mechanism is denoted by g ( 0 ) .  This func- 
tion  will be taken as normalized so that its integral  from -a to +a is unity,  and it will  also  be 
taken  to  be  symmetric  about  the  circular  orbit  velocity p, w .  Thus,  Liouville's  Equation  (Equa- 
tion 39) is treated as an  initial  value  problem,  the  value of f at time t = 0 being 

In other  words  the  needles, of total  mass M ,  are  concentrated  initially at the  point (p,, 0 ,  7d2) 

with zero  velocity  components in the p and + directions but  with a velocity  distribution g ( O )  in the 
Bdirection.  The pt is present in the  denominator  because  the  delta  function in curvilinear  coordinates, 
when written as the direct  product of delta  functions of the  individual  coordinates,  must  have  the 
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Jacobian of the  transformation in the  denominator  (Reference 14, p. 292); for  spherical  coordinates 
the  Jacobian is p2 s i n  4 which is converted  to p: because of the  presence of 6 ( p  - p o )  and 8(+  - n / 2 ) .  

The  method  to  be  used first for this initial value  problem is that  provided by the  Picard  proc- 
e s s  on t ,  which essentially  amounts  to  obtaining f as a power ser ies  in t , This  has  the  advantage 
of being carried out rather  easily but it has the disadvantage of presenting f in a form that does 
not  display all the  properties of the  distribution  function as clearly as certain  other  methods,  in 
particular the  method illustrated later. 

The  Picard  process  consists in writing Equation 39 in the  form 

f (-7s 1 dU - 7 P@ cot -) P &3' g ] d t  , (41) 

and  employing  iteration,  starting  with f ,  i n  place of f in the  integrand. 

We shall consider  the  force  field due to  three  sources:  the  earth's  gravitational  field,  the 
self-gravitational  field of the  particles  themselves, and  the  gravitational  field of the  needles' 
original  container which presumably will  travel with  the  needles  after  they  have  been  ejected. 
The  potential  per  unit mass due to  the  earth's  gravitational pull is 

That  due  to  the  needles  themselves is 

where N ( p ,  8 ,  4,  t )  is the  spatial  distribution of the  needles. On the  assumption  that  the con- 
tainer (with mass Mc) is traveling in a circular  orbit  in  the  midst of the  needles,  its  potential 
per unit mass is 
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For the  initial  approximation f = f,,  so that 

No E N ( f o )  = 11 f ,dPd@d@ 

The  initial  approximation of the  self-gravitation  potential  consequently is 

The  initial  potential  due  to  the  container is found by setting t = 0 in  the  formula  for u ( ~ )  : 

Consequently,  the  combined  initial  potential is 

The  terms involving the  potential,  from  Equation 41, 

JU, J f ,  1 JUO J f o  1 JUO J f o  
" "" - J p   J P  ' p s i n +  JQ J @  9 p J+ J @  ' 

-" - 

simplify  considerably  because of the  delta  functions  in f , . In fact, 

1 JU, J f o  - 1 JUO J f o  - 
p sinq5 J0  J@ - p Jq5 J @  

- - 0 .  
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Substituting f for f in the  integrand of Equation 4 1 
tion to f :  

then leads  to  the  first-order-in-t  approxima- 

This  phase  space  distribution can be  integrated  over  the  velocities  to  give  the  position  space 
density  function  through the first power in t .  Simplifications  occur  here  because 

and because g ( 0 )  is assumed  normalized so that its integral is unity. This latter specialization 
also  entered  into  the  computation for No. The first order position  space  density is 

The  factor po w arises as from  the  integration of Og(O) ,  which uses  the  assumption  that g ( 0 )  is 
symmetric about  the  point p o w :  

= po w J g ( O )  dO+ J (O - p 0  b) g ( O )  dO 
-a -m 

The last integral  vanishes  since its integrand is skew-symmetric about po &I; i.e., an odd function 
of 0 - po w .  

To  obtain f ( 2 )  this  entire  procedure is repeated, but f is used in place of f in the  integrand 
of Equation 41. This  means also, of course,  that U ( l )   U ( f ( , ) )  is employed.  Thus, for  the 
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needles'  self-gravitating  potential  the  potential  integral  with  density N ( l )  is formed.  The  evalua- 
tion of this  integral  depends on a formula  used  before, .(x) S'(X) = a ( 0 )  8'(x) - a ' ( 0 )  6 ( x ) .  The 
first  order  potential  arising  from  the  container's mass is obtained  simply by expanding its poten- 
tial function in powers of t and  keeping  only the first two terms.  The  complete first order poten- 
tial turns out to be 

The  details in determining f (z) are  similar  to  those for finding f ( 1), although, as expected, 
the  work is considerably  greater.  The  resulting  formula is 

I 

4 

(42 1 
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The  essential  problem remains, of course, of extracting the information of interest  from this ! 
prolix  expression.  The  principal  difficulty arises from the meaning of the terms involving the 

I 
derivatives of the delta functions. The  most  natural way of investigating these terms is to take 1 
the various  moments of f . These  moments  give  average  values  for p, pz  , 8, 8' , etc.  for  the col- I 
lection of particles, and thereby  describe the distribution.  Different  delta  derivatives take effect I 
for  different  moments. 

I 
I 
1 

Of primary  interest is the  position  space  density  function N(') N ( f  , generated by inte- I L .  
grating f (') over  the  velocity  space.  From Equation 42 this is immediately found to  be 

It was  assumed that ( 0  - po w ) g ( 0 )  vanishes at +a,, so that the  term involving 

vanishes  under  integration. 

The  integration of N(2)  over all position  space  should,  and  does,  give the total mass of the 
needles: 

This  provides one check on our  work.  The  masses of the earth and the container  do  not  appear 
since  these  were not  considered  to be included in the distribution  function.  They  merely  contribute 
the  external  force field. 

At the initial instant  the  needles  were  assumed  to be concentrated at one  point,  but the con- 1 
tinuous  velocity  distribution g ( 0 )  imposed on them caused them  to  spread.  To  get  an  idea of the 
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extent of this spreading (in the second  order  theory) in the radial direction,  the p - p0 moment of 
N c z )  will  be  computed. This divided  by the mass M gives the average or expected  value of p - po at 
time t :  

" 
- 1 M I t Z  , 
- * P O  

i 

where I is the  second  moment of g ( 0 )  about its point of symmetry, po W ,  

( P - P o )  = - t Z  , 
I 

*PO 

which, we  note, is of the  second  order  in t . 
The  spread of the  needles  in  the B direction  after  expulsion  from  the  container is indicated by 

the B moments of N(z) . It is quickly found that 

so that the  average  value of B is, as expected  from  the  symmetry of the  setup, 
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or 

= . 
POZ 2 

The  moments in the  velocity  space when  computed  will  give  information  concerning  the  aver- 
age  values of the  different  velocity  components. 

Our chief dissatisfaction  with  the  power  series in t method is that it does not give a compact 
formula  for f or N independent of the delta function where  such should exist. For example,  the 
density  distribution in the B direction at time t is no longer  degenerate but is continuous;  i.e. the 
needles  have  been  spread  out, and so there should  be a function representing this that  involves  no 
delta functions.  Such a function was  not  obtained by the  method  just  used. A method will now be 
given that does  provide  this  form  for  the  answer. 

Equation 42 indicates  that, as far as it goes, f involves + and @ only through S(+ - d 2 )  and 
S ( @ )  (which has  the  effect of keeping  the  problem  two-dimensional),  and P only through S(P) and its 
derivatives.  This  suggests that f be  assumed  to be of the  form 

The  advantage of this  form is offset  somewhat by the  fact  that  the  resulting  equations are non- 
linear if the  self-gravitation of the  needles is taken  into  account. Therefore  the  treatment  here 
will  be  restricted  to  the  case in which the  force  field  results  from  the  earth's  gravitational  field 
alone.  Consequently, the equation to  consider is a specialization of Equation 39: 
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P 

The  initial  condition is again presented by Equation 40 which implies  that  for  the unknown 
functions Er ( P ,  0 ,  0, t) 

Er is zero  for r < 0. 

This equation  can  be  regarded as a recursion  formula in  conjunction  with an iteration  pro- 
cedure.  For  the first approximation we shall take E, = E, = E, = . . . = 0; the  solution  that  satis- 
fies Equations 46 is 

where  the  series is the  Fourier  representation of the  delta  function  (Reference 5, p. 33). This 
representation is introduced  to  facilitate  the  use of the Laplace  Transformation in solving  for E:,) 
etc. 

TO  improve on this approximation  to E, we determine  an  approximate E, ,  using  the  value of 
E,,(') in the equation for E, (setting E, = 0), and  then  use  this  value of E, in the equation for E,. 

The first three  equations  taken  from  Equation 47 a r e  

(49) 
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Ed') is the  solution  to  the first of Equations 49 (subject  to  the  side  condition  imposed by 
Equations  46)  with E, set to  zero. We thus  seek E,( ') as a solution to  the  second of Equations 49 
with E, set to  zero, E, replaced by Ed ' ) ,  and  the  initial  values of E, taken  to be zero in agreement 
with  Equations 46. That is, the following  equation is to  be  solved  for an initial  value of zero: 

The  Laplace  Transform of Equation 50 with respect  to t is 

I 

By assuming a Fourier  expansion  for E,(1),  

from Equation 51 

Thus upon taking  the  inverse  transform 

This  same  technique is used to  determine E d Z )  from  the first of Equations 49, 
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This  successive  approximation  scheme for Equations 49 is in essence  the  same as that  sug- 
gested  for  Equation 22 in the  section  devoted  to  the  improvement of an  approximate  orbit of a 
single  particle or n particles. c ~ , , ~ ,  with r t . . . t s 3  = 1 was of greatest  interest for that  case. 
In the  present  case E, is of greatest  interest,  because  it is the only E r  that  remains upon reduc- 
tion  to  position  space  after  integrating  over  the  velocities.  The  expression  for N, the  position 
space  density, is simply 

1 1  

N ( f )  = (1 fdPdOd@ 

- m  

When the  value  for E, given by Equation 52 is employed  the  spatial  density is found  to  be 

The interesting thing  about this  formula, in comparison  with  the  corresponding  Equation 43 
of the  previous method, is that  here  the ( 7 ,  t dependence is expressed  through  the  continuous point 
function g ( u )  instead of through  the  delta function  and its  derivatives. Note that  this method has 
transferred  the continuous  initial  velocity  distribution in 0 to  such a distribution  in  the  position 
space  coordinate :>. 

Of course, as in  the  previous  method,  it is possible  to  form  the  various  moments  with  respect 
to N ( z )  given  in  Equation 53 and  obtain the  same  results  for p ->;, 8 , ( j2 ,  etc. as in the  previous 
method.  However,  the  particular  form  for  Equation 53 enables us  to  get  other  information of in- 
terest.  For  example,  the longitudinal  variation of the  needle  density is displayed by the  fornlula 
resulting  from  integrating N ( z )  in  the p and 6 directions: 

WEST FORD NEEDLES-DISPERSION 

After the  dispensing  mechanism  has  spread  the  needles  out  in a belt  around  the  earth,  the 
question a r i s e s  of the  permanence of the  belt  under  the  action of the  various  disturbing  forces. 
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Ideally,  the  unperturbed  distribution has the  shape of a circular  wire of uniform  density in the 
equatorial  plane.  The  particles are to have a nonzero  velocity  component only in  the  longitudinal 
direction, of a magnitude  which provides a circular  orbit  under  the  earth's  gravitational field 
alone.  The  distribution  function  that  describes  this is 

(54 1 

The 271 in the  denominator is necessary so that the  integral of f over all phase  space is simply M, 
the  mass of the  needles. 

This 2 represents an equilibrium  distribution  under  the  earth's  gravitational  force  alone  and 
so it is a steady  state  solution  to  Liouville's  Equation. At t = 0 the  perturbational  forces,  repre- 
sented  through a potential U, are  assumed  to  take  effect, modifying the  distribution  function by the 
addition of a function  which vanishes at t = 0: 

f = F + F  . 

This is equivalent  to  saying that f is to  satisfy an initial  value  problem  under  the  combined earth's 
gravitational  and  perturbational  force  fields  with  an  initial  value ? as in Equation 54. 

Under these circumstances  Liouville's Equation  becomes  an  equation  for f, 

For the  problem  to  remain  simply  two-dimensional,  the  disturbing  force in the  equatorial 
plane  must  act only parallel  to this plane.  A way of expressing  this, which will  be  used  here, is 
to have S(4- d 2 )  aWa4 = 0. 

Letting 
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and substituting  into  Equation 55 gives 

where is U evaluated  for 4 = ~ / 2 .  This equation is to  be  solved  under  the condition that F vanish 
at t = 0. Since we are interested  primarily  in  the  character of F in  position  space it is expedient 
to  assume  an  expansion  for F of the form 

Thus, in finding the  position  space  density  the  delta  functions  in  Equation 57 are  removed by in- 
tegration, so that N is expressed in terms of u r s  ( 0 ,  a, t ) .  We hope to  determine u r S  ( p ,  8, t )  in a 
form devoid of delta  functions of 8. 

The  equation  in ur  , after combining  Equations 57 and 56 and  making  some  delta function 
manipulations, is 

" I p U r + l , s  S ( ' ) ( P ) S ( ~ ) ( o - p 0 w )  " -S(p-po) S'(P)S(o-p,w)-" - 
1 d 6  M 1 J U  M 

dp a p t  p o a e y S ( O - p o )  S(P)S'(@-p,a) = 0 . (58) 
2 T "  

Two types of disturbing  forces will  be  considered:  solar  radiation  pressure, and drag due to 
electromagnetic  effects  (References 9-13).  The  solar  pressure  will be  taken as a constant  force 
acting in the  negative x direction,  the  earth's shadow effect  being  neglected.  The  potential  then 
has the  form Sp cos 8 s i n  4. The  electromagnetic  drag  can  be  approximated  for  particles  traversing 
a circular or nearcircular  orbit by a conservative  force with  potential A B ,  with A a constant. Con- 
sequently,  the  disturbing  potential is 
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The  functions urs  are  to  satisfy  the  system of equations  derived  from  Equation 58 by using 
Equation 59, 

+ - ( A - s ~ ,  s ine )  - ~ ( p - p , )  , 1 M 
PO 2np: 

f p u z O  3 + S c o s B  2 M q P - P , )  

%Po J 
under  the initial condition of the  vanishing of all urs at the  initial  instant.  This  problem  submits  to 
the technique  used earlier on similar  problems.  The first approximation to uoo is obtained by 
solving  the first of Equations 60 with uo l  and u l 0  se t  to zero.  This homogeneous  equation  with zero 
initial  data  evidently has as its solution u::) = 0. For the first approximation  to uO1 and u l 0  we put 
uo0 = u,,$$) = 0 and set  uoz u l l  = u z 0  = 0 in the  second and third of Equations 60: 

This  system of linear  partial  differential  equations  with  constant  coefficients (as far as the 
differentiation  variables a r e  concerned),  subject  to  the  side  conditions of zero initial data on t 

and periodicity on e, can  be  handled by various  techniques. A convenient  way is that used  previ- 
ously:  taking  the  Laplace  transform with respect  to t, solving  the  resulting  system of total dif- 
ferential  equations  in 8 ,  and  then taking the inverse  transform.  The  result in this  case is 

38 



I 

Therefore  the  value of u i k )  is improved by solving  the first of Equations  60  after  evaluating 
the  right  side  through the use of Equations 62. The  formula obtained for uoo is 

- -  4 + 3 G  1 + f i  [ 4w q P - P , )  + - s ( P - P o ) ]  c o s p + ( f i -   l ) w t ]  

For a still better  approximation ubi), uiI1), and "2:) could be found from  four, five,  and six of 
Equations 60. These  values and u&;) would be used in  equations two and three  to yield ud:) and u::). 
Finally  these  values would be put in  the first equation  and u o o  solved. 

An analysis of the  results would begin  with the  determination of the  position  space  density, 

N = 11 f dPdOdQ = 111 ( P + F ) d P d O d Q  = 2.rpoz 6 ( p - p o )  F ( + - $ ) t u O O  Z(4-5) . M 

- m  -m 

The  variation of the  density  with e is indicated by the  integration of N in the p and 4 directions, 

If the  radiation  pressure  effect  alone is considered it is noted from Equation 64 that the  density 
runs  essentially as M/2npO (1  - k COS S )  , meaning that  initially  the  density  concentration  increases 
on the far side  from the sun and decreases on the near  side. 
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An insight  into  the  radial  direction  effects of the  disturbing  forces  may be  gained from a study 
of the  radial moment.  Straightforward  computation  gives 

The  average  value of P - po as a function of e is found by dividing  Equation 65  by Equation 64. 
The  electromagnetic  drag is seen  to  contribute a uniform  shrinkage  to  the  belt with a change in p 

amounting to - A 3p, u2 (ut )3 t * * . which, for a moderate  value of t ,  is likely  to  be  very  small be- 
cause of the  probable  small  size of A (Reference 13). The  solar  radiation  pressure  causes a shift 
of the  entire  orbit away from  the sun together  with a much lesser  shift  in  the 90 degree  leading 
direction  to  the  direction away from  the  sun.  This may  be  noted from  the  negative  lead-off  coef- 
ficients of C O S  0 and s i n  0 in  Equation 65. The  shape of the  belt  changes  too-from a circle  to  nearly 
a limacon,  with  the  nearest  point  to  the  earth  almost on the  line  from  the  earth  to  the  sun. 

EQUALLY SPACED ECHO SATELLITES 

Now we shall discuss the problem of whether a number of artificial  satellites (for example, 
Echo  balloons)  which are initially  equally  spaced  around a common circular  orbit  will  maintain 
this  symmetry  to a high degree, or tend to bunch in one region,  thereby  leaving  gaps  elsewhere. 

As in the case of the  needles'  belt  geocentric  spherical  coordinates  prove  advantageous. How- 
ever, now the plane 4 = d 2  will  not  be  the  earth's  equatorial  plane but rather  the  initial  orbital 
plane of the  satellites.  The motion of the  satellites  will  be  treated  from  the viewpoint of perturba- ! 

tion  theory,  the  dominant  force  field  represented by that for a spherically-symmetric  earth.  Then 
the unperturbed  distribution  satisfies Equation 45, , 

where m is the mass of each  satellite and = 2a~/n t w t  . Let  represent  that  portion of the 
distribution  arising  from  the  perturbational  forces, so that  the  total  distribution  function  under 
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all forces is 

T,, To , and Tb designate  the  components of the  disturbing  force  per unit mass. The  fundamental 
equation for g, on the  basis of Equations 39, 66, and 67, is 

n 

+ 7 T  S ( p - p o )  S ( 8 - B a )  S 6' (P) S ( O - p , w ) S ( @ )  
m 

Po a= 1 

One method of continuing is to  assume an expansion  for f involving P ,  8 , 4 ,  P, 0, @ Only in the 
delta  functions  and  their  derivatives: 

m 

The  differential-difference-sum  equation  for C.",-..,'t ), obtained by substituting  Equation 69 into 
Equation 68, is quite  elaborate  for  the  general  perturbing  force  per unit mass (T,,  T,, T+) . A less 
formidable  equation  results  from a procedure similar to that employed  in  the  latter  part of the 
last section. This is a compromise. e is expanded  in te rms  of delta functions  in P, 0, and @, with 
p ,  8 ,  and 4 (and t )  left  in  the  to-be-determined  coefficients.  Then 
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The  substitution of Equation 70 into  Equation 68 leads  to  the  differential-difference equation, 

duxyz 2Po 4 Y  f 1) Po 4 x  f 1) p o w ( z  t l ) c o t +  
" 

d t  P U x - l , y + l , z  P U  X+l,  y-1. z P u x ,  y-1, z+1 
t t 

+ 2(y 1 2): U x - l , y t z , r  + 2 i" 1 2, + U x - L   y .  z+z - '  (x 1) (Y 1) ( y  t 1) ( z  t 1) cot  $6 
P 

- 
U X t l , Y , Z  P u x .  Y. Z + l  

The  problem is considered as an initial value  problem.  The  satellites  traverse  the  same 
circular  orbit with  constant  angular  speed until the  "initial  instant," t = 0, when the  perturbing 
forces  take  effect.  Consequently,  Equation 71 is to  be  solved,  subject  to  the initial condition 

UXYZ (Q,  8, d ,  0 )  = 0. 

An inversion of a differential-difference  operator  portion of Equation 71  will not  be attempted, 
although terms could  be extracted that bear a resemblance  to  those in  Equation 24, where  such  an 
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1 1 
1 

1 
inversion was  accomplished. Nor shall we be satisfied with merely  inverting d/d t . Rather, a tech- 
nique will  be  used that lies between these  extremes.  The  difference  operator  aspect  will be treated 

1 

I as a recursion  relation.  Inasmuch as it is the e variation that interests us  most d / d t  and d / d e  wi l l  
I be  inverted,  with  the  remaining  differential  operators  taken  care of through  appropriate  delta func- 
I tion  expansions. 

! For the first few values of the  integers X, y, and Z, Equation 71 is 
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4 -- 3 cot q5 
p - ~ p u021 ' Te UOlO = 0 ' 

2 duo12 4 4 cot q5 6 cot q5 p; w2 cot 4 
" - 

p dq5 - p u~~~ - ___ p '"012 + ___ p u030 + uOOl + Tq5uO10 ' p UOlO = 0 1 

6 6 2 cot q5 2 cot 4 p; a2cotq5 
+ p u o o 3  - p u z 0 1  -- p '"102 +- p Ul20 UOOl + T, UOOl + T4 UlOO + ~- p UlOO = 0 .  

In Equation 73 T 626 = T, ( p o ,  e,, n / 2 )  6 ( p  - po) 6 (0  - ea) 6 (4 - ~ 1 2 ) .  The common characteristic 
of each of these  groups is the  sum of the indices for the two  lead-off terms.  For Equation 72 it is 
0, for  Equations 73 it is 1, for  Equations 74 it is 2. Equations 19 and 37 indicate that the  sum of 
the indices on uxyz shows the order of its size. The equations  within  any  group are also noteworthy 
in that the  only  differentiation  operator  present  operating on terms of the  same  order as the 

PO 
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1' 
I, , this operator,  recalling that the  side conditions a r e  that u x Y z  = 0 for t = 0 and  that uxy, is periodic 

I: In employing the successive  approximation  scheme  previously  suggested, first Equation 72 is 

lead-off terms is E + a This  situation  prompts us to  treat  the  equations by inverting 

in 8 with  period 277. 

x. a 
ii' 
;r 

i: 
1 
I 

considered  alone,  with the initial  approximation ui&) = u,,(po' = uo6",' = 0. It is evident that the solu- 
1 
I 

tion  to  Equation 72, subject  to  the  stated  side  conditions, is ui$ = 0. This  approximation may be 

after setting = 0, where X t y t z = 2, and  using the best  value  for uooo available, u,,($,) = 0. 
That is to say, the following equations a r e  solved: 

4 improved by revising  the  approximation  to u l o 0 ,  uo l0 ,  uOo1. This is done by solving  Equations 73 

J 
The  presence of the  delta  functions on the  right  foretells  their  presence in the  solution  and so it 
is postulated  that 

Inserting this representation for u:;; into  Equations 75 gives  the following system of equations 
for ( l ) v  0 0 0 .  

x y z  . 

A convenient  technique for handling this system is to employ  the  Laplace  transform  with  respect  to 
t ( - )  and the finite  Fourier  transform with respect  to e(.'-). In anticipation of this the Fourier  series 

I a 45 



for  the  disturbing  force  components  was  inserted on the  right of Equations 76. In these  series 
the  coefficients are constants-the  Fourier  coefficients of T, ( p o ,  8 ,  d 2 ) ,  etc.  The  transformed 
equations form a linear  algebraic  system, 

which  gives 

(1): 000 = - u r  
00 1 7 ( 7 + i r o )  

The  variable 7 is the  Laplace  transform  variable  counterpart to t , and, similarly, r is the  Fourier 
transform  variable  counterpart  to 8. 

Upon taking  the  inverse  transforms  the  solution  to  Equations 75 is found to be: 

a r  J 
Now the  original  value  for uooo may  be  improved.  The  expressions given by Equations 78 a r e  

used in  Equation 72 and this is then  solved by the  technique  just  employed. However, in the 
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present  case  derivatives of the  delta  functions  will  appear on the  right  because of the  presence of 
terms like du:ob)/ap. Consequently, it is necessary  to  assume 

The  value as determined by solving  Equation 72 is 

where 

A second  order  approximation  to uooo may  be  obtained by the same  general  procedure,  starting 
with  Equations 74 under the assumption that uxyz = 0 for x + Y + z = 3 and  using the approximate 
values  already obtained for uxyl  for x + Y + z = 0 and 1. As  may  be  imagined,  the  labor is con- 
siderably  greater than it was  in  the  previous  discussion. 
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In the first order  work  the  formula employed for  the  distribution  function is 

" i i L = o  1' 2' 3 

where 

Furthermore,  since this is an n-body problem it is apparent that the  distribution function must be 
of the  form 

where i;, ( t )  etc.  are  the  exact  solution  functions. 

The  total mass is found by integrating  over all phase  space.  This would be,  from  Equation 83, 

If the  alternative  form  for  the  distribution function,  Equation 82, is used  the  integral  over all phase 
space is 
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= 0 .  

Upon integrating, 

In the first order 
independent, 

theory this means  (refer  to Equation  80) that, since  the ea a r e  inherently 

Ar - 2Br - i r C r  = 0 , 

a  fact that inspection of Equations  81  verifies. 

This  moment  formed by using  the  alternative  representative of Equation 82 turns  out  to  be 

But the  expression  in  brackets  vanishes (see Equations 84 and 85), and so in the first order 
theory 
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In a similar fashion  the  velocity  component in the B direction may  be found by taking  the 0 
moment, 

Now these  results will be  used  to  determine  the  growth of asymmetry in the  original configu- 
ration of n satellites evenly  spaced  about a circular  orbit. Under the  perturbational  forces  the 
spacing  becomes  irregular.  Various  measures of this  asymmetry could  be devised;  the  following 
is used  here: 

which compares  the  spacing  between  successive  disturbed  satellites  with  that  between  successive 
equally  spaced  satellites. Such a measure is independent of rigid  rotation  and,  therefore,  inde- 
pendent of the  choice of the  satellite  corresponding  to a = 1. 

Equation 86 may  be written 

where 

w r  ( t )  = (2. cr + E ,  C') ? 

1 

with Cr given in  Equations  81  (see  also  the  remarks following  Equation  81).  Consequently, 
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i 4  

I I!' The  geometric series 

i /  
1 1  

The  special case (the case of interest)  will  be  considered  where  the  disturbing  force com- 
ponents T, (po ,  e a ,  d 2 )  and T, (p,, , ea, d 2 )  a r e  even  and odd functions of B a ,  respectively.  That 
is to  say,  since  their  complex  Fourier  coefficients  are  indicated by A r  and pr , respectively, we 
have A_, = A r  and p-r -p,. Furthermore,  since  the  complex  Fourier  series 

must  represent  real-valued functions, the noted symmetries demand h r  to  be  pure  real and p, to 
be  pure  imaginary.  For convenience  we may write I", = - i m r ,  so  that 

which is pure  real  since X r  and ur  are  pure  real .  Simple  formulas  connect  these  coefficients  for 
positive  and  negative  indices, 

Similarly,  from  Equations 81 

C-r  = C,* , and 
- - 

C r  = c,' . 
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The  asterisk  represents  the conjugate  with respect  to i (the complex  conjugate),  whereas  the bar 
represents the conjugate  with respect to fi. 

From  these  relations a simple  form  for Wr W,, and  therefore  for Q may be obtained, 

It is a straightforward  matter  to  compute W r  W - r  from  this  formula  in  terms of t and  the 
Fourier  coefficients X r  and my. The  result, when incorporated  into  Equation 90, gives 

2 f i 5  (h. - r q  , (3r6 - 6r4 t 16r') h: t (- 12r5 + 8 r 3  - 32r) X r  or + (2r6 t 8r4 t 1 6 ) ~ :  
t" w t  s i n  f i w t  + 

r (r' - 2 )  
- .  ~ 

2r4 (r' - 2)'  

2 (rh, -or) (rh, - 254 A; - 2Cr; 2(rXr  -mr).[2rAr - ( r ' t 2 )  ~4 
r' (r' - 2) 

cos f i w t  f cos 2 f i w t  + 
2 (  r' - 2) r4 [r'- 2)  

cos rut 

( A r  - f i m r )  [2rhr - (r' + 2) .-.I 
- 

r z  ( r  - e) ( r 2 -  2) 
cos (r - fi) w t  

It is not  immediately  apparent  from  the  form of this  expression  that it vanishes when t = 0, but 
such is the  case. 
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The first three  terms  in  the  braces  in Equation 92 ultimately  provide  the  growth  to Q(t). The 
bulk of the contribution is apt  to  come  from  the first few coefficients vn, which are  those  for the 
8 component of the disturbing  force. 

Let  us  examine  the  case of the earth and a satellite of the  Echo  type.  The  potential  due  to the 
earth's  gravitational  field is 

where J 2  and J 3  are  numerical  constants,  the  force  field is the  negative of the  gradient of U, and 
+e is measured  from the North  Pole.  Suppose  the  satellite's  undisturbed  orbital  plane  intersects 
the equatorial  plane  along  the y axis  and  the  orbital  plane lies above  the  positive X axis.  Let  the 
declination of the sun relative  to the earth's  equator be 8, and the  sun's  coordinates in the p ,  8 ,  4 
system  (i.e.,  the  system  based on the undisturbed  satellite's  orbit)  be K ,  0, 4.  Then 

With the  force due to  the  solar  radiation  pressure  falling off inversely as the  square of the 
distance,  the  potential is 

V = k [p2 + K Z  - 2pK (cos 8 s i n  4 s i n  4o f cos 4 cos do)] - 1 / 2  

Upon taking  the  gradient of the  two  potentials  and  evaluating at the point (po ,  Q a ,  n / ' 2 )  the 
components of the  total  disturbing  force  per  unit mass a r e  found to  be 

+ po5 J 3  

- - cos ea s i n 4 0  + (3  cos2 ea - 1) $1 , 

2 [5 cos3 8, s i n 3  (&o - 3 f S1) - 3 c o s  8 ,  s i n  (do - 5 f S3]} 77 

" [  P 

K* 

+ -  s i n B , s i n 4 0  
k 

K2 
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1 + 3 cos Ba s i n  do 

In these  formulas  the  solar  radiation  terms  were expanded  in powers of p / K  and terms of a 
higher  degree  than  the first were  neglected.  The  equations  can  be  written in the  form of (finite) 
Fourier  series in B a  by employing trigonometric  identities  to  convert  powers of the  trigonometric 
functions  to  functions of multiples of the  angle.  For  the  p-direction  component 

+{$mJ3psin3 (+o-T 77 + E l )  - 3 ~ i n ( + ~ - + t S ~ ) ]  - k 

Similarly, 

t r-GMJ, 15 s i n 3  (do - 5 + sl)] s i n  , L@,S 

which  makes it plain  that po = 0, p l  is half the  coefficient of s i n  Ba divided by i ,  etc.,  and pr = - P - ~  

for r = 1, 2, 3. 
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t: As a numerical  example we shall  take $o = 137.3 degrees, 6, = 0 degrees, po = 1-1/4 earth 
radii, and k/K' = 4.75 X l o e 3  cm  per  second  per  second.  These  figures  approximate  those  for 
Echo I (1960 L 1). With these  data,  from  the  Fourier  expansions  for T, and T, the  values  for  the 

I 
I coefficients are found to be: 

~ 

A ,  = - 0 . 6 ~  10-6po u' , m1 = + 2 . 8 ~  1 0 - 6 p o w '  , 

A, = + 4 2 0 x  1 0 - 6 p o u ' ,  mz = t 280x po w 2  , 

A, = - 0 . 6 ~  1 0 - 6 p o u ' ,  o3 = - 0 . 4 x  10-6pow'  

+ 2 0 . 4 7 '  + 3 5 . 6 )  , 

where a configuration of thirty (n = 30) satellites is assumed and w t  r . This  result  shows  that 
Q is essentially  increasing as r' but that  there is oscillation  about  this  parabolic  curve of period 
f i n  in r . The  amplitude of these  oscillations is so small,  however,  that  the  curve  for Q is mono- 
tone increasing.  Therefore,  this first order  theory  for  this  example  indicates  that  the  asymmetry 
in the  configuration  steadily  grows.  Naturally, for longer  periods of time a second order  theory 
would be required  to show whether  this  trend  continues o r  reverses.  

(Manuscript  received April  6, 1964) 
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